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a b s t r a c t

A method, based on binomial filtering, to estimate the noise level of an arbitrary, smoothed pure signal,

contaminated with an additive, uncorrelated noise component is presented. If the noise characteristics

of the experimental spectrum are known, as for instance the type of the corresponding probability

density function (e.g., Gaussian), the noise properties can be extracted. In such cases, both the noise

level, as may arbitrarily be defined, and a simulated white noise component can be generated, such that

the simulated noise component is statistically indistinguishable from the true noise component present

in the original signal. In this paper we present a detailed analysis of the noise level extraction when the

additive noise is Gaussian or Lorentzian. We show that the statistical parameters in these cases (mainly

the variance and the half width at half maximum, respectively) can directly be obtained from the

experimental spectrum even when the pure signal is erratic. Further discussion is given for cases where

the noise probability density function is initially unknown.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

As any measured data-signal or experimental spectrum is

always contaminated by noise to some extent, the nature of the

noise component, corrupting a pure signal in stochastic processes,

is of central relevance and is recently being acknowledged by a

growing portion of the scientific and engineering communities. In

many situations, the careful treatment of noise-induced, non-

equilibrium phenomena, represented by nonlinear index-series

signals (e.g., time or channel) and the prediction of the noise-level

characteristics in such physical stochastic systems, may be of great

value [1]. This is particularly true for dynamical processes [2–4]

where nonlinear behavior is expected, and may seriously alter any

estimation of the states of the system, if not actually cause a total

divergence of the model parameters. Such conditions are common

in many nonlinear systems when modeled by recursive or

adaptive methods such as Wiener or extended Kalman filtering.1

In recent years, the estimation of noise level in time series

signals has gained noticeable attention, especially in cases where

the measured signals or spectra are known to be highly non-

stationary, as for instance in electroencephalogram (EEG) spectra

and similar biological fields, geophysics and chaotic systems. Refs.

[6–17] (and references therein) present the relevant literature for

a comprehensive background on some practical and theoretical

aspects of noise-level estimation approaches in nonlinear sys-

tems, that are subject to non-stationary time evolution. In

particular, the authors of Refs. [6,7] present methods to estimate

the noise component in noisy time series based on computing

vectors of logarithmic displacement [6] or time-dependent

exponent curves [7]. However, such methods lack the generality

needed for most cases or need the original signal to be known.

General background in the fields of stochastic processes and

noise characteristics may be found in standard textbooks (i.e.,

[18,19]), however, the general problem of estimating the noise level

given a non-stationary, nonlinear and initially unknown signal is

usually not taken into consideration. Most other methods to extract

the noise properties or reduce the effect of noise in experimental

measurements that use for example, polynomial fit approaches,

such as, moving average (MA) [20,21], moving weighted average

(MWA), local polynomials method (LP) [22], locally weighted scatter

plot smoothing (LOWESS) [23] and other related methods [24], all

suffer from the incomplete initial knowledge concerning the degree

of the polynomial fit applicable for the numerical manipulation on

one hand and the ill-posed conditions of the calculations when

using high order polynomials on the other hand. In most cases these

limitations prevent the extraction of valuable information pertain-

ing to the noise characteristic in the contaminated signal or

experimental spectrum.

Some general methods for estimating the noise statistics such

as the Bayesian estimation method, maximum likelihood estimation,
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innovation correlation and other case-specific approaches have

been well known for a long time, while some other methods have

recently been published and are briefly reviewed in Refs. [25–28].

Fundamental aspects concerning the incorporation of external

estimation of the noise statistics into adaptive filtering algorithms

are discussed in Refs. [26–28]. These methods all suffer, however,

from either numerical calculation inefficiency, if implemented in

real-time applications, or need to be fine-tuned for the specific

case under investigation.

Difference filtering, and in particular binomial filters, are well

known and are described in references such as [29,30]. Recently, a

general approach to derive an explicit expression for the

probability density function of the m’th order numerical differ-

entiation of a purely stochastic variable was presented [31], based

on principles similar to binomial filtering, however, allowing both

additions (convolution) and subtractions of relevant distributions

to be performed. It has been shown that the statistical

characteristics of the original (white-) noise component, following

m’th-order differentiation can be obtained analytically based on

the original probability properties of the observed (measured)

signal in a simple manner. In the present contribution we focus on

the statistical treatment of the noise extraction procedure and

present a detail analysis of the noise level estimation when the

additive noise is either Gaussian (normal distribution) or

Lorentzian (Cauchy distribution) in nature. We show that the

statistical parameters in these cases (namely the variance s2, for a

normal distribution or the half-width at half-maximum (HWHM)

g, for the Lorentzian) can directly be obtained from the noisy

signal even when the pure signal is erratic. In this paper we

assume that the unknown pure signal is square-integrable and

further, can be approximated by a (arbitrarily high) m’th-degree

polynomial function (see general remarks on the order of the

polynomial degree below), and suggest the use of high-order

differentiation of the noisy signal in order to derive the statistical

parameters of the noise component of such signal, i.e., a pure

signal corrupted with additive white noise. The main aim of this

analysis is to obtain the first moments of the noise component in

the random signal, and in particular, for dynamic, non-stationary

processes, where the statistical noise parameters may be func-

tions of time that corrupt an unknown deterministic pure signal

component. The approach taken in this paper would be to time-

window the sequenced data signal and treat the sliced signal as an

independent identical distributed random variable in the analysis

proposed, so as to allow any time-varying statistical property of

the initial noise component to be developed.

The outline of the paper is as follows: In Section 2 we briefly

review the general method and demonstrate that the proposed

approach allows for the estimation of the statistical parameters of

the original distribution and further, to simulate the noise

contribution of the original stochastic signal so that the simulated

noise component is statistically indistinguishable from the true

contribution of the noise in the originally observed data signal. In

Section 3, a discussion follows on the ability to extract the original

statistical moments of the noise component in the contaminated

signal (such as its variance or higher moments). It is demon-

strated in Section 4 that the noise level can be obtained in real-

time (or off-line) and with only a few assumptions on the nature

of the signal itself. The central parts of the paper are Sections 3

and 4, where the statistical results are derived and demonstrated

for the normal (Gaussian) and Cauchy distribution (Lorentzian)

cases. We further apply the method to experimental results and

extract the noise level in some typical Rutherford Backscattering

spectra (RBS). The paper is concluded with some general remarks

in Section 5 where we also mention some of the limitations of the

approach and discuss the main assumptions that are needed for

consideration.

2. The stochastic high order numerical differentiation

We first review the basic idea in difference filtering and in

particular binomial filters (see for instance Refs. [29,30]), how-

ever, generalizing the method to allow both additions (convolu-

tion) and subtractions of relevant distributions to be performed.

We consider the random component in a stochastic process xðniÞ

with ni, the collection of stochastic events and refer to the case

where the stochastic variable represents a random signal with a

known probability distribution function (see Ref. [31] for detailed

assumptions and conditions on the signals and mathematics). A

differentiating operator, operating on a signal, may then be

defined with respect to the index of the signal data points in their

sequenced order (or equivalently, treating the signal as a time

series vector with a unit time step). By this, one may realize that a

differentiation procedure, of the first order, is equivalent to

subtracting the element ni from the element ni+1 in the stochastic

signal. Since, in such a random set of points, each point is totally

independent of all other points in the set and controlled only by

the mutual statistics that they all belong to (the sample space, i.e.,

all points (i,j) are uncorrelated for ia j), the equivalence to

subtracting the element ni from the element ni+1 in the noise

signal would be the subtraction of two independent random

variables with identical statistical distribution (IID). In contrast to

the case of the first numerical differentiation, where one could

assume that all individual data points were uncorrelated, higher

order numerical differentiation involves correlated expressions

that may lead, in the general case, to non-trivial expressions for

the resultant probability functions.

Using the above definitions (and those listed in Ref. [31]) and

referring to some arbitrary random variable function Vðni; xÞ,

considered here as the original data spectrumwith x, the stochastic

random variable, one can now derive the second order numerical

differentiation index series V ð2Þðnð2Þ
i
; xð2ÞÞ, with xð2Þ referring to the

unknown stochastic random variable corresponding to the

second-order numerical differentiation vector by realizing that

ni
(1)=ni�ni�1 and ni+1

(1) = ni+1�ni so that ni
(2)=ni+1

(1) �ni
(1)

=ni+1�2ni+ni�1 (we use the parenthesized superscript (m) to

denote differentiation of order m). These expressions imply that

the probability density function of the second order numerical

differentiation is the equivalent pdf of the sum of three

independent, random variables, all with similar, yet, non-

identical, probability density functions (InID).

We now recall that given two independent random variables:

x1; x2AR
k, with m and n corresponding to their respective

distribution functions and f and g denoting their respective

density functions, the distribution of the sum x1þx2 is the

convolution m � n operation between the corresponding distribu-

tion functions and the analogue density function of the sum

equaling the convolution integral denoted by f*g in the index/time

domain. When the distribution of x1�x2 is needed, the mathe-

matical operation is no longer that which is referred to as the

convolution and so we use the notation *(�) and the explicit

integral is to be performed. We will exploit both of these

operations in the following. Using the notation fx1 ;x2 ;x3 ¼ fx1 �
ð�Þfx2 � fx2 (i.e., the density function of the subtraction of the two

stochastic variables with probability density functions fx1 and fx2
calculated first and then added to the density function of the

random variable fx3 , implies that the second order numerical

differentiation may be written as2

f
nð2Þ
i

¼ ðfni
� ð�Þfð�2niÞÞ � fni

ð1Þ

2 This directly follows from the second order differentiation step ni
(2)

=ni+1
(1) �ni

(1)=ni+1�2ni +ni�1.
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Following the above arguments for higher numerical differ-

entiation, it can now be easily deduced that the m’th order

numerical differentiation of a random variable derived from an

arbitrary statistically defined variable, can be obtained by noting

that the corresponding weights that dictate the numerical

differentiation expressions are given by the non-zero elements

(with the zeros omitted) of following matrix denoted here as the

Stochastic-Derivative matrix, Sk
m [31], (shown here for m=9):

where k denotes the columns of the Stochastic-Derivative matrix.

It can easily be verified that each of the elements is given by

SðmÞ

j
¼ ð�1Þjþ1

m

j

 !

ð3Þ

where ðmj Þ represents the elements of the binomial coefficients

(see also in Refs. [29,30]).3

Note that the above expression was derived in order to account

for the weight of the individual contributions in the integrals that

represent the additions or subtractions of the stochastic variables

involved in the differentiation process (i.e., the elements of Sj
m and

represents the factors that are needed in order to calculate the

probability density function of the differentiated set, and not the

differentiated noise values themselves (that increase rapidly in value,

as will be shown in the following). In terms of a summation of the

individual elements needed to account for the probability density

function of the m’th order numerical differentiation, one may write:

fm ¼
X

m

j ¼ 1

SðmÞ

j f ðzÞ ð4Þ

with f(z) representing the probability density function of the

original random variable. It can be shown [31] that for the general

case:

FzðzÞ ¼

ZZ

Dz

Y

m

j ¼ 1

fzj dx1 dx1 . . . dxN ¼

ZZ

Dz

Y

m

j ¼ 1

Smj fjðxÞ

2

4

3

5dxðmÞ
ð5Þ

where FZ(z) is the probability distribution function of the new

random variable Z over its volume of existence Dz. Since the

density function used here is the same for all individual elements

of the multiplication term under the integral, only weighted

properly by the suitable elements of the stochastic derivative

matrix, this can symbolically be written as

FðmÞ
ni

¼

ZZ

Dz

Y

m

j ¼ 1

Smj f ðxÞ

2

4

3

5dxðmÞ
ð6Þ

where FðmÞ
ni denotes the probability distribution function of

@mVðni; zÞ=@i
m that can easily be evaluated to derive the respective

density function, recalling that the term
Qm

j ¼ 1 S
m
j f ðxÞ really

represents the integrals that are to be performed for the additions

or subtractions of the stochastic variables involved in the

differentiation process, in correspondence with the original

probability function weighted accordingly, based on the Stochas-

tic-Derivative matrix.

As a general remark, we note that the only assumption set on the

random variable in the above derivation, is the assumption that it

represents a pure random signal (with no deterministic component)

with an arbitrary probability distribution function (f(z)).

It should also be mentioned that the above arguments,

although mathematically simple, are general and are not

restricted to any particular probability density function of the

observation.

In what follows, we focus our discussion on the specific cases

where the probability density functions of the noise statistics in

the experimental spectrum is either Gaussian or based on Cauchy

distribution function. Other cases will be discussed in the last

section of this paper.

In the example of the Gaussian case, the analysis yields

relatively straightforward expressions as the Gaussian pdf belongs

to the few probability functions that adds and subtract into

similar functions.4 We therefore consider a Gaussian distribution,

where z is referred to as the random variable, f ðzÞ ¼Nð0;s2
0Þ, i.e., a

Gaussian distribution where the first moment is equal to zero and

the variance is given by s2
0 as an illustrative probability density

function (the numerical differentiation of the following with

mean values other than zero is straightforward).

For Gaussian case, the corresponding expression is of the form:

dmNð0;s2
0Þ

di
m ¼Nð0;bðmÞs2

0Þ ð7Þ

with bðmÞ given by the sum of the squares of the elements of the

m+1’s row in the Stochastic-Derivative matrix.

Using Eq. (6) and the arguments above, one can derive the

probability density function of a zero mean Normal distribution

for any differentiation of order m of a discrete random signal [31].

For instance, the analytical expressions for the first, second and

fifth numerical differentiation are simply:

d

di
Nð0;s2

0Þ ¼Nð0;ð12
þ12

Þs2
0Þ ¼Nð0;2s2

0Þ

d2

di
2
Nð0;s2

0Þ ¼Nð0;ð12þ22þ12Þs2
0Þ ¼Nð0;6s2

0Þ

d5

di
5
Nð0;s2

0Þ ¼Nð0;ð12
þ52þ102

þ102
þ52þ12

Þs2
0Þ ¼Nð0;252s2

0Þ

ð8Þ

Smk ¼

1

1 �1

1 �2 �1

1 �3 3 �1

1 �4 6 �4 1

1 �5 10 �10 5 �1

1 �6 15 �20 15 �6 1

1 �7 21 �35 35 �21 7 �1

1 �8 28 �56 70 �56 28 �8 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð2Þ

3 The Stochastic-Derivative matrix Sj
m, as defined above, is in fact a variant of

Pascal Triangle.

4 Note that for f ðXÞ ¼Nð0;s2
x Þ and f ðYÞ ¼Nð0;s2

y Þ, the corresponding

f ðZ ¼ X7YÞ ¼Nð0; ½s2
x þs2

y �Þ.
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In a similar manner and based on the Cauchy distribution5:

f ðXÞ ¼ Lðm¼ 0;gÞ ¼
g=p

x2þg2
ð9Þ

where m is the location parameter and g is the half-width at half-

maximum (HWHM) of the distribution, the following can easily

be obtained:

d

di
Lð0;g0Þ ¼ Lð0;ð1þ1Þg0Þ ¼Nð0;2g0Þ

d2

di
2
Lð0;g0Þ ¼ Lð0;ð1þ2þ1Þg0Þ ¼ Lð0;4g0Þ

d5

di
5
Lð0;g0Þ ¼ Lð0;ð1þ5þ10þ10þ5þ1Þg0Þ ¼ Lð0;32g0Þ ð10Þ

3. Noise level estimation

To demonstrate the proposed motivations for the use of high-

order numerical differentiation of a stochastic signal for noise

level extraction, we now refer to the case where uncorrelated

noise, either due to the experimental set-up or to the process

itself (or both these sources), is added to the signal and is blurring

the pure data signal. It is the aim of the following to demonstrate

how to extract a simulated noise component such that the

simulated noise is statistically identical to the noise part in the

original experimental signal.

In this section, we present a detailed analysis, followed by a

numerical simulation, for the extraction of the noise level in an

arbitrarily given noisy signal where the noise component is either

Gaussian or Lorentzian. Further, we show, in the example

described in a later section, that the extracted statistical variables

(the variance in the case of normally distributed additive noise

component and the HWHM where Cauchy distribution is

considered) are stable even when the differentiation order is

extremely high.

For simplicity we thus assume that the arbitrary noisy signal is

given by P=S+N, with N being the additive, uncorrelated noise

added to the pure, smooth and continuous signal S. Here, the term

‘‘smooth signal’’ should be understood as only limited by the high

frequencies inherently contained in the noise spectral character-

istics. Let us further assume that on the interval of validity of S,

one can approximate the stochastic signal P (for instance, in the

Least Mean Square sense) by an m’th-degree polynomial function

that may belong to a complete monomial basis. Note that no

restrictions were set on the order of the numerical differentiation

m that can, in principle, arbitrarily be chosen. This can be proved

to be possible for any bounded, smoothed and continuous

function S (via Weierstrass approximation theorem.6

Assuming the above, the following treatment is fully justified

for the general case where the deterministic part of the noisy

signal is finite (bounded) and smoothed (at least square integr-

able) so that the approximation:

dmþ1

di
mþ1

P¼
dmþ1

di
mþ1

N ð11Þ

may be used, since the m’th numerical differentiation of S under

the above assumptions is constant, and thus vanishes for higher

orders.7 However, it should be noted (see also below) that the

assumption of IID of the elements in the stochastic data set is now

only approximated, as the deterministic part (if it exists) of the

original signal may cause some dependence for the case of a signal

with a deterministic component. The effect, however, is small and

can be neglected as the order of differentiation increases. It is thus

clear that the purpose of the differentiation is to terminate the

effect of the ‘‘pure’’ signal (which is, of course, an unobservable

component in the stochastic system). However, the differentiation

does leave the differentiated noise contribution almost untouched

(as we have assumed additive noise) and when assuming that a

prior knowledge about the type of the noise is at hand (e.g.,

Gaussian, Lorentzian, etc.), the above analysis may suggest a

general method to obtain the statistical parameters of the original

noise components (i.e., before the differentiation). In this respect,

one may interpret the proposed method as passing the noisy

signal through a series of high-pass filters that iteratively reduce

the power of the pure signal while maintaining that of the

additive (assumed white) noise component.

Now, if the characteristics of the statistical properties of the

high-order numerical differentiation of the original noise are

derived (i.e., N(m+1)), the probability density function that

statistically describes the initial noise, subject to high-order

numerical differentiation), in terms of the parameters (assumed

to be unknown) of the statistical nature of the noise (assumed to

be known), can obtained and thus the noise-level in the original

signal P can be deduced.

It should also be mentioned that the effect of possible outliers

in the original noise component, is drastically suspended as such

events are usually propagated to the external regions of the axis

in the differentiated domain and have only minor contribution on

the pdf under study.

4. Simulated and experimental examples

To demonstrate the above, we now refer to a detailed example.

At the end of this section we apply the principles of the method to

Fig. 1. The ‘‘Pure’’ signal in the example given in the text (the abbreviation [a.u.] in

the figure indicates ‘‘arbitrary units’’).

5 Note also here that for f ðXÞ ¼ Lð0; gxÞ and f ðYÞ ¼ Lð0; gyÞ, it follows directly

that f ðZ ¼ X7YÞ ¼ Lð0; ½gxþgy�Þ.
6 Also for non-smoothed and discrete function based on the unisolvence

theorem for interpolating n nodes 4mþ1; see for example the classical proof by K.

Weierstrass, Mathematische Werke, Bd. III, Berlin 1903, pp. 1–17. Can also be

found in most textbooks on Functional Analysis.

7 This approach can easily be generalized also for orthogonal, complete-basis

functional systems other than polynomials.
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some experimental results (typical RBS signals). For the sake of

clarity, we list the following steps:

1. We first define an arbitrary signal (‘‘pure’’) that was manipu-

lated so that rapid structural characteristics are pronounced.

Fig. 1 shows the arbitrary, pure deterministic component in

the original signal to be used for later reference.

2. We then add a random, white and unbiased noise signal

originated from a Gaussian or Cauchy probability density

function (pdf) as shown in Fig. 2 (in this example s0 ¼ 14 and

g0 ¼ 5).

The noise component itself, as a function of time, is shown in

Fig. 3.

3. To verify the original statistical parameters, we have per-

formed a histogram calculation of the noise obtained in the

previous step and perform a LMS fit to the Normal and

Lorentzian distributions (see Fig. 4). The original s0 (Normal)

and g0 (Cauchy) were indeed confirmed.Fig. 5

4. shows the ‘‘experimental’’ noisy signal that resulted by adding

the noise contribution to the ‘‘pure’’ signal. As can easily be

seen, the separation between the experimental spectra and the

noise components in the combined sets of data points is

blurred.

5. We next perform a 50’th order numerical differentiation of the

data set and show the obtained result in Fig. 6 as the histogram

of the resulting signal, LMS-fitted to a Gaussian and Lorentzian

correspondingly. The re-normalization of the variance of the

fitted Gaussian and the HWHM of the Cauchy distribution

based on expressions (8) and (10) above (with m =50) have

reviled s and g values to less than 1% deviation from the

original value of s0 and the corresponding value of g0.
6. The corresponding differentiated signals are shown in Fig. 7.

Note the huge spread of the spectrum.

7. In Fig. 8 we show the development of the normalized s and g
as functions of the order of numerical differentiation up to m

=200. It can be clearly seen that the obtained values are very

close to the original statistical value of the initial noise.

Fig. 2. The Gaussian (a) and Lorentzian (b) functions used as the model to generate a Normal and Cauchy distributed random signals in the example given in the text (the

abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’).

Fig. 3. A Normal (a) and Lorentzian (b) distributed random signals, representing the white noise contribution, derived from the model Gaussian and Lorentzian functions

(Figs. 2 a,b) in the example given in the text (the abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’).

N. Moriya / Nuclear Instruments and Methods in Physics Research A 618 (2010) 306–314310
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When any prior knowledge, with respect to the original

probability function of the noise is not at hand (i.e., the type

of the corresponding pdf), one may, based on the above

approach, conduct a simple test, to deduce the specific probability

density function of the original stochastic process in the observed

data signal by reproducing only the noise component from the

noisy signal and further process it so that no unintentional

influences, related to the pure signal rather than to the noise, are

affecting the probability testing procedure (we do not show

this here).

Typical Rutherford Backscattering (RBS) spectra of a Fe-doped

/100S InP substrate, were performed using 1.8MeV He+ ion

beam at random direction and along the /100S lattice axis

(channeling direction). Fig. 9 shows both the raw RBS spectra (a)

and the noise-level estimates as extracted by applying the HOSD

analysis on the RBS spectra (b) assuming uncorrelated normal

noise distribution. Differentiations of orders up to 15 are shown in

Fig. 9(b) to yield stable results for the entire range of

differentiation orders. Note, however, that due to the detailed

structure of the spectra near channel 420, low differentiation

orders are insufficient in obtaining the no-biased results and only

higher orders revile the zero-biased noise level estimates.

Comparisons (not shown here) with either polynomial

techniques (see in Refs. [20,21]) or other smoothing methods

such as Savitzky–Golay filtering [32,33], yielded inferior results

due to the inherent difficulty to match a consistent set of

parameters so to cover the entire spectral range, even when

windowing approach was tested. Also, due to its direct process of

the noisy signal to recover the noise component, the HOSD

method has shown high numerical efficiency as compared to the

other methods tested.

It should also be noted that the theory and method described

here are totally insensitive to the sampling rate in the original

discrete signal. This is due to the normalization of the time axis

(in a time series signal) into an indexed axis where each of the

sampled points are given integer indexes (i.e., 1;2; . . . ; k). The

assumption that the separation between two adjacent points is

one unit (i.e., that the sampled points are equally separated in the

Fig. 4. The histogram of the noise signal (Fig. 3) fitted to a Gaussian (a) and Lorentzian (b) functions in the LMS sense. Histogram counts are dotted while fits are marked as

solid lines (the abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’).

Fig. 5. The ‘‘noisy’’ signals used in the example given in the text and composed by adding the noise component to the ‘‘pure’’ signal (see Figs. 3 and 1 respectively). The

abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’.
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index axis), allows the further numerical differentiation of the

differentiation process with no need to consider any specific case

(with respect to sampling rates) for the sake of the generality of

the discussion.

5. Conclusions

We now wish to remark on two basic issues that are of

importance for the scope of the proposed method. First, we

address the restriction we intentionally set, on the pure signal, i.e.,

its smoothness and being subject to an m’th-degree polynomial

fit. We note that this limitation is only marginal since as long as

the fit quality is not worse than the noise variance, (i.e., the

residual is within the statistics) this condition will not set severe

practical limitations on the degree of the differential order m.

Secondly, as was also mentioned above, although the assumption

of independence of the individual elements in the stochastic data

set is now only approximated, as the deterministic part may cause

some dependence between the differentiated points, it can be

shown that the effect is small and can surely be neglected as the

order of differentiation increases. Also, note the assumption of

uncorrelated, additive noise component in the original noisy

signal.

In conclusion, we have derived a principle set of expressions

for the probability density function of the m’th numerical

differentiation of a stochastic variable. It was shown that the

statistical characteristics can be obtained analytically based on

the original probability parameters of the observed signal for the

normal and Cauchy distribution, as a sum of independent, though

non-identical, random variables, based on a simple weighting

procedure of the original probability density function. We suggest

that this allows the estimation of the statistical parameters of the

original (assumed white), noise distribution parameters, such as

the variance of the probability density function, and further, to

simulate the noise contribution in the stochastic system so that

Fig. 6. The histogram of the noisy signal (Fig. 5), after fifty (50) steps of differentiation. Also shown are the Gaussian and Lorentzian fits obtained in the LMS sense (solid).

The abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’.

Fig. 7. The distribution of the differentiated signal after 50 steps of differentiation. The abbreviation [a.u.] in the figure indicates ‘‘arbitrary units’’.
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the noise component reconstructed is statistically indistinguish-

able from the true contribution of the noise in the originally

observed data signal. Note that although we use the assumption

that the deterministic component of the noisy signal is smoothed,

which under the practical restriction that the signal is finite in

time (as a time-series) and thus can always be approximated by a

polynomial function, the order of such approximation is unknown

for the general case. The proposed method eliminates any a-priori

assumption of the order of the polynomial approximation as a

higher degree of derivative can be used to still recover the noise

component in a statistical manner. Both simulated signals and

experimental spectra were used and yielded good results. Tests to

compare the results with other methods to recover the noise

component, show that the proposed method is very efficient from

numerical perspective (similar to Savitzky–Golay filtering, how-

ever, with better performance), due to its direct process of the

noise component.

It is interesting to note, that in contrast with the Gaussian

distribution density function (and the Cauchy distribution, as

discussed above), the general case of arbitrary distribution need

not necessarily result in a density function similar to the original

function after the differentiation of order m. This may simply be

concluded if one experiments with a uniform probability density

function which results to obtain a triangular shaped probability

function even for m=1. However, recalling that the m’th order

numerical differentiation is, in fact, a series of integral terms

representing additions and subtraction of the corresponding

probability distribution functions, each weighted according to

the Stochastic-Derivative Matrix, the derivation of the respective

expression may be straightforward. For instance, the probability

density function of the first numerical differentiation of the

exponential probability distribution function (i.e., Pearson Type X)

f ðXÞ ¼ leð�lxÞ for xZ0 is given by f 0ðzÞ ¼ ðl=2Þe�lzð1�e�2lzÞ for

zZ0, i.e., a non-exponential pdf.

Fig. 8. The re-normalized values of the sm (a) and gm (b) (with m, the differentiation order) as extracted from all histograms for each of the 200 differentiation steps. Note

that all values are close to the initial value of the original s0 and g0 correspondingly.

Fig. 9. Typical Rutherford Backscattering (RBS) spectra obtained with 1.8MeV He+ ion beam of a Fe-doped /100S InP substrate at random and channeling directions (a).

Shown in (b) are the noise-level estimates as extracted by applying the HOSD method.
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